Introduction to Linux

Mukesh Pund
Principal Scientist,
NISCAIR, New Delhi, India

History

- In 1969, a team of developers developed a new operating system called "Unix" which was written using C
- Linus Torvalds, a young man studying computer science at the university of Helsinki developed academic version of Unix which is named as Linux.
- Linux is a full UNIX clone.

Linux a powerful OS!

- Today Linux has joined the desktop market.
- On the server side, Linux is well-known as a stable and reliable platform.
- Linux provides many applications like:
 - Databases (MySQL,Postgresql),
 - Network services(Web Servers, DNS, Proxy, firewall etc)
 - Software development tools(C, Java, Python, Perl etc.)
 - Office automation tools
 - And many more...

Is Linux difficult?

- There is excellent and free Internet support and documentation available.
- The graphical user interface (GUI) is similar in design to that on any other system
- A very powerful command line alternative is also available.
- Linux is user friendly.

Properties of Linux

- It is Open Source
 - Today, Linux is ready to accept the challenge of a fast-changing world.
- Linux is free:
 - If you want to spend absolutely nothing, you don't even have to pay the price of a CD.
 - Linux can be downloaded in its entirety from the Internet completely for free.

Properties of Linux

- Linux is portable to any hardware platform.
- Linux was made to keep on running.
 - As with UNIX, a Linux system expects to run without rebooting all the time.
 - Tasks can be scheduled to run at suitable times.

Properties of Linux

- Linux is secure and versatile.
 - The security model used in Linux is based on the UNIX idea of security which is robust.
 - It is less prone to virus attacks.
- Linux is scalable

Commands...

Let's have an overview of frequently used commands in Linux.

Note: Some commands can only be executed by super user (example adduser, shutdown etc).

Creating a new user

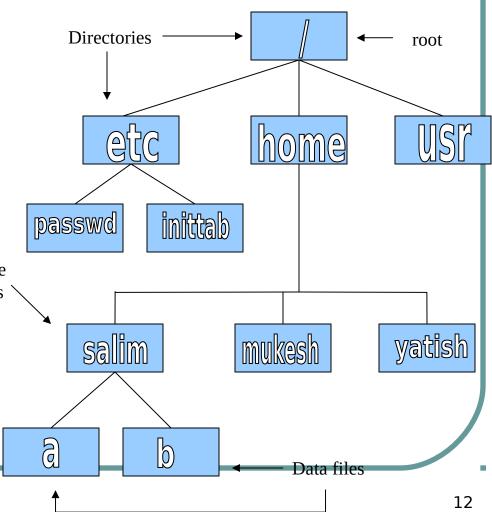
- Use the useradd command
- Use the passwd command to set password
- Try it... logon as root

```
[root@mukesh]# useradd sdc1
[root@mukesh]# passwd sdc1
Changing password for user sdc1
New UNIX password:
Retype new UNIX password:
passwd: all authentication tokens updated successfully
[root@mukesh]#
```

What is a Shell?

- Is a program that takes your commands from the keyboard and gives them to the operating system to perform
- An interface between the Linux system and the user
- Used to call commands and programs
- Many available (bsh; csh; bash; etc.)

You need help? Add more


- In Linux help can be accessed by command man (manual)
 - Use man <command> to display help for that command

Linux File System Basics

Linux files are stored in a single rooted, hierarchical file system

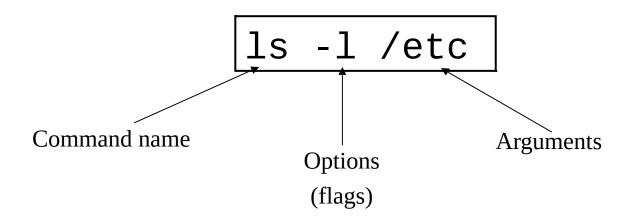
 Data files are stored in directories (folderis) tories

 Directories may be nested as deep as needed

Some Special File Names

- Some file names are special:
 - The root directory (not to be confused with the root user)
 - The current directory
 - The parent (previous) directory
 - ~ My home directory

Special Files


- /: The root directory where the file system begins.
- /boot: This is where the Linux kernel is kept.
- /etc: The /etc directory contains the configuration files for the system.
- /bin, /usr/bin: These two directories contain most of the programs for the system. The /bin directory has the essential programs that the system requires to operate, while /usr/bin contains applications for the system's users.

Special Files

- /sbin, /usr/sbin: The sbin directories contain programs for system administration, mostly for use by the superuser.
- /usr: The /usr directory contains a variety of things that support user applications
- /lib: The shared libraries (similar to DLLs in that other operating system) are kept here.
- /home: /home is where users keep their personal work.
- /root: This is the superuser's home directory.

Linux Command Basics

 To execute a command, type its name and arguments at the command line

Command Options

- Command options allow you to control a command to a certain degree
- Conventions:
 - Usually being with a single dash and are a single letter ("-1")
 - Sometimes have double dashes followed by a keyword ("--help")

Navigation and Looking Around

- pwd print (display) the working directory
- cd <dir> change the current working directory to dir

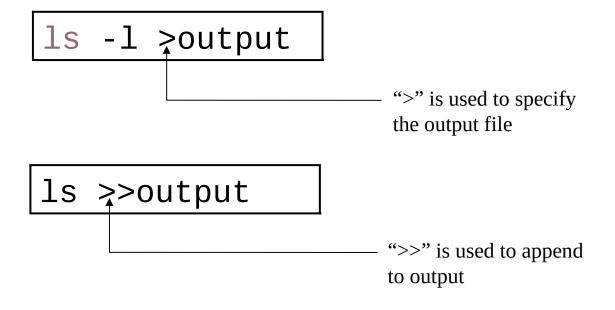
```
cd ..
```

- ls list the files in the current working directory
- ls -l list the files in the current working directory in long format

File and Directory Manipulation

- cp <fromfile> <tofile>
 - Copy from the <fromfile> to the <tofile>
- mv <fromfile> <tofile>
 - Move/rename the <fromfile> to the <tofile>
- rm <file>
 - Remove the file named <file>
- mkdir <newdir>
 - Make a new directory called <newdir>
- rmdir <dir>
 - Remove an (empty) directory
- cat > <file>
 - Create file <file>

Data display from files

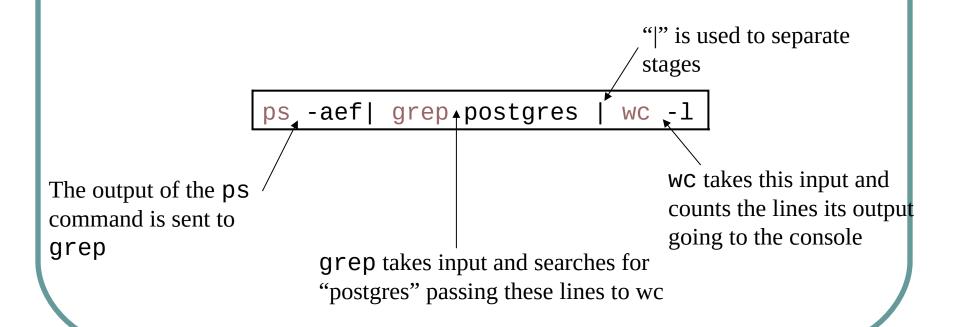

- cat <file>
 Displays contents of the <file>
- head -n <fromfile>
 Displays n lines from top of the
 <fromfile>
- tail -n <fromfile>
 Displays n lines from bottom of
 <fromfile>

Standard Files

- UNIX concept of "standard files"
 - standard input (where a command gets its input) - default is the terminal
 - standard output (where a command writes it output) - default is the terminal
 - standard error (where a command writes error messages) - default is the terminal

Redirecting Output

• The output of a command may be sent (piped) to a file:


Redirecting Input

• The input of a command may come (be piped) from a file:

Connecting commands with Pipes

• The output of one command can become the input of another:

- who
 - List who is currently logged on to the system
- who am i
 - Report what user you are logged on as
- ps
 - List your processes on the system
- ps -aef
 - List all the processes on the system
- echo "A string to be echoed"
 - Echo a string (or list of arguments) to the terminal

 grep - Searches files for one or more pattern arguments. It does plain string, basic regular expression, and extended regular expression searching

Example: ls -l |grep "mukesh"

ls command display the listing of files in current directory. And grep command searches for "mukesh" file in that listing.

- kill sends a signal to a process or process group
- You can only kill your own processes unless you

```
[root@mukesh log]# ps -aef
Above command will display result like:

[root@mukesh log]#
UID PID PPID C STIME TTY TIME CMD
root 6715 6692 2 14:34 ttyp0 00:00:00 sleep 10h
root 6716 6692 0 14:34 ttyp0 00:00:00 ps -ef
And one can kill the process by following command:
[root@mukesh log]# kill 6715
[1]+ Terminated sleep 10h
```

- tar manipulates archives
 - An archive is a single file that contains the complete contents of a set of other files; an archive preserves the directory hierarchy that contained the original files.

```
tar -zxvf imap-4.7.tar.gz
imap-4.7/
imap-4.7/src/
imap-4.7/src/c-client/
imap-4.7/src/c-client/env.h
imap-4.7/src/c-client/fs.h
```

Switching Users

su <accountname>

 switch user accounts. You will be prompted for a password. When this command completes, you will be logged into the new account. Type exit to return to the previous account

Su

Switch to the root user account. Do not do this lightly

Note: The root user does not need to enter a password when switching users. It may become any user desired. This is part of the power of the root account.

PATH Environment Variable

Controls where commands are found

 PATH is a list of directory pathnames separated by colons. For example:

```
PATH=/bin:/usr/bin:/usr/X11R6/bin:/usr/local/bin:/home/scully/bin
```

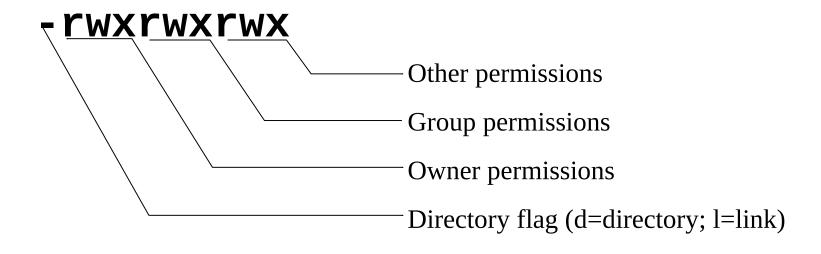
 If a command does not contain a slash, the shell tries finding the command in each directory in PATH. The first match is the command that will run

File and Directory Permissions

- Every file or directory
 - Is owned by someone
 - Belongs to a group
 - Has certain access permissions for owner, group, and others
 - Default permissions determined by umask

File and Directory Permissions

• The long version of a listing (ls -1) will display the file permissions:


```
-rwxrwxr-x 1 rvdheij rvdheij 5224 Dec 30 03:22 hello
-rw-rw-r-- 1 rvdheij rvdheij 221 Dec 30 03:59 hello.c
-rw-rw-r-- 1 rvdheij rvdheij 1514 Dec 30 03:59 hello.s
drwxrwxr-x 7 rvdheij rvdheij 1024 Dec 31 14:52 posixuft

Permissions

Group

Owner
```

Interpreting Permissions

Changing Permissions

 Use the chmod command to change file or directory permissions

```
rwx rwx rwx = 111 111 111 = 777
rw- rw- rw- = 110 110 110 = 666
rwx --- = 111 000 000 = 700
```

```
chmod 755 file # Owner=rwx Group=r-x Other=r-x
chmod 500 file2 # Owner=r-x Group=--- Other=---
chmod 644 file3 # Owner=rw- Group=r-- Other=r--
chmod +x file # Add execute permission to file for all
chmod o-r file # Remove read permission for others
chmod a+w file # Add write permission for everyone
```

Changing ownership

chown - change file ownership

chown name some_file

chgrp - change a file's group ownership

chgrp new_group some_file

Processes

- As with any multitasking operating system, Linux executes multiple, simultaneous processes.
- Processes are created in a hierarchical structure whose depth is limited only by the virtual memory available to the virtual machine
- A process may control the execution of any of its descendants by suspending or resuming it, altering its relative priority, or even terminating it
- Termination of a process by default causes termination of all its descendants; termination of the root process causes termination of the session
- Linux assigns a process ID (PID) to the process

Processes

Foreground

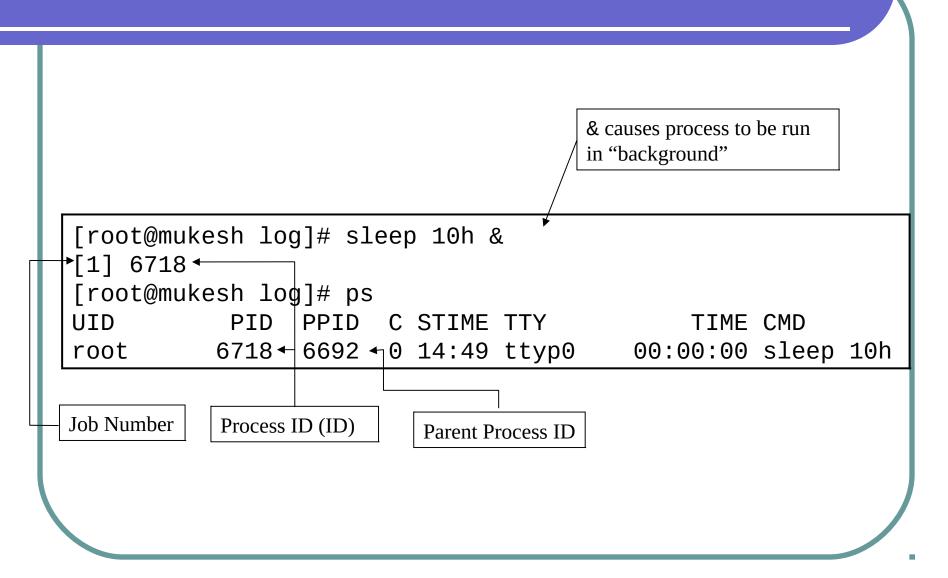
 When a command is executed from the prompt and runs to completion at which time the prompt returns is said to run in the foreground

Background

 When a command is executed from the prompt with the token "&" at the end of the command line, the prompt immediately returns while the command continues is said to run in the background

Process Control Commands

• ps - list the processes running on the system


 kill - send a signal to one or more processes (usually to "kill" a process)

Process Control Commands

```
$ ps
PID TTY TIME CMD
1280 pts/5 00:00:00 bash
1293 pts/5 00:00:00 xload
1294 pts/5 00:00:00 ps

$ kill -9 1293
[2]+ Terminated xload
```

Processes

Editors

Several choices available:

vi Standard UNIX editor

xedit X windows text editor

emacs Extensible, Customizable Self-

Documenting Display Editor

pico Simple display-oriented text editor

